3.2.6 \(\int \frac {a+b \text {csch}^{-1}(c x)}{x (d+e x^2)^2} \, dx\) [106]

3.2.6.1 Optimal result
3.2.6.2 Mathematica [C] (warning: unable to verify)
3.2.6.3 Rubi [A] (verified)
3.2.6.4 Maple [F]
3.2.6.5 Fricas [F]
3.2.6.6 Sympy [F]
3.2.6.7 Maxima [F]
3.2.6.8 Giac [F]
3.2.6.9 Mupad [F(-1)]

3.2.6.1 Optimal result

Integrand size = 21, antiderivative size = 515 \[ \int \frac {a+b \text {csch}^{-1}(c x)}{x \left (d+e x^2\right )^2} \, dx=-\frac {e \left (a+b \text {csch}^{-1}(c x)\right )}{2 d^2 \left (e+\frac {d}{x^2}\right )}+\frac {\left (a+b \text {csch}^{-1}(c x)\right )^2}{2 b d^2}+\frac {b \sqrt {e} \arctan \left (\frac {\sqrt {c^2 d-e}}{c \sqrt {e} \sqrt {1+\frac {1}{c^2 x^2}} x}\right )}{2 d^2 \sqrt {c^2 d-e}}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 d^2}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 d^2}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 d^2}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 d^2}-\frac {b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 d^2}-\frac {b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 d^2}-\frac {b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 d^2}-\frac {b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 d^2} \]

output
-1/2*e*(a+b*arccsch(c*x))/d^2/(e+d/x^2)+1/2*(a+b*arccsch(c*x))^2/b/d^2-1/2 
*(a+b*arccsch(c*x))*ln(1-c*(1/c/x+(1+1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2) 
-(-c^2*d+e)^(1/2)))/d^2-1/2*(a+b*arccsch(c*x))*ln(1+c*(1/c/x+(1+1/c^2/x^2) 
^(1/2))*(-d)^(1/2)/(e^(1/2)-(-c^2*d+e)^(1/2)))/d^2-1/2*(a+b*arccsch(c*x))* 
ln(1-c*(1/c/x+(1+1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(-c^2*d+e)^(1/2)))/ 
d^2-1/2*(a+b*arccsch(c*x))*ln(1+c*(1/c/x+(1+1/c^2/x^2)^(1/2))*(-d)^(1/2)/( 
e^(1/2)+(-c^2*d+e)^(1/2)))/d^2-1/2*b*polylog(2,-c*(1/c/x+(1+1/c^2/x^2)^(1/ 
2))*(-d)^(1/2)/(e^(1/2)-(-c^2*d+e)^(1/2)))/d^2-1/2*b*polylog(2,c*(1/c/x+(1 
+1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(-c^2*d+e)^(1/2)))/d^2-1/2*b*polylo 
g(2,-c*(1/c/x+(1+1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(-c^2*d+e)^(1/2)))/ 
d^2-1/2*b*polylog(2,c*(1/c/x+(1+1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(-c^ 
2*d+e)^(1/2)))/d^2+1/2*b*arctan((c^2*d-e)^(1/2)/c/x/e^(1/2)/(1+1/c^2/x^2)^ 
(1/2))*e^(1/2)/d^2/(c^2*d-e)^(1/2)
 
3.2.6.2 Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 4.41 (sec) , antiderivative size = 1428, normalized size of antiderivative = 2.77 \[ \int \frac {a+b \text {csch}^{-1}(c x)}{x \left (d+e x^2\right )^2} \, dx =\text {Too large to display} \]

input
Integrate[(a + b*ArcCsch[c*x])/(x*(d + e*x^2)^2),x]
 
output
a/(2*d^2 + 2*d*e*x^2) + (a*Log[x])/d^2 - (a*Log[d + e*x^2])/(2*d^2) - (b*( 
Pi^2 - (4*I)*Pi*ArcCsch[c*x] - (2*Sqrt[d]*ArcCsch[c*x])/(Sqrt[d] - I*Sqrt[ 
e]*x) - (2*Sqrt[d]*ArcCsch[c*x])/(Sqrt[d] + I*Sqrt[e]*x) - 12*ArcCsch[c*x] 
^2 + 4*ArcSinh[1/(c*x)] + 16*ArcSin[Sqrt[1 + Sqrt[e]/(c*Sqrt[d])]/Sqrt[2]] 
*ArcTan[((c*Sqrt[d] - Sqrt[e])*Cot[(Pi + (2*I)*ArcCsch[c*x])/4])/Sqrt[-(c^ 
2*d) + e]] - 16*ArcSin[Sqrt[1 - Sqrt[e]/(c*Sqrt[d])]/Sqrt[2]]*ArcTan[((c*S 
qrt[d] + Sqrt[e])*Cot[(Pi + (2*I)*ArcCsch[c*x])/4])/Sqrt[-(c^2*d) + e]] - 
8*ArcCsch[c*x]*Log[1 - E^(-2*ArcCsch[c*x])] + (2*I)*Pi*Log[1 - (I*(-Sqrt[e 
] + Sqrt[-(c^2*d) + e])*E^ArcCsch[c*x])/(c*Sqrt[d])] + 4*ArcCsch[c*x]*Log[ 
1 - (I*(-Sqrt[e] + Sqrt[-(c^2*d) + e])*E^ArcCsch[c*x])/(c*Sqrt[d])] + (8*I 
)*ArcSin[Sqrt[1 + Sqrt[e]/(c*Sqrt[d])]/Sqrt[2]]*Log[1 - (I*(-Sqrt[e] + Sqr 
t[-(c^2*d) + e])*E^ArcCsch[c*x])/(c*Sqrt[d])] + (2*I)*Pi*Log[1 + (I*(-Sqrt 
[e] + Sqrt[-(c^2*d) + e])*E^ArcCsch[c*x])/(c*Sqrt[d])] + 4*ArcCsch[c*x]*Lo 
g[1 + (I*(-Sqrt[e] + Sqrt[-(c^2*d) + e])*E^ArcCsch[c*x])/(c*Sqrt[d])] + (8 
*I)*ArcSin[Sqrt[1 - Sqrt[e]/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (I*(-Sqrt[e] + S 
qrt[-(c^2*d) + e])*E^ArcCsch[c*x])/(c*Sqrt[d])] + (2*I)*Pi*Log[1 - (I*(Sqr 
t[e] + Sqrt[-(c^2*d) + e])*E^ArcCsch[c*x])/(c*Sqrt[d])] + 4*ArcCsch[c*x]*L 
og[1 - (I*(Sqrt[e] + Sqrt[-(c^2*d) + e])*E^ArcCsch[c*x])/(c*Sqrt[d])] - (8 
*I)*ArcSin[Sqrt[1 - Sqrt[e]/(c*Sqrt[d])]/Sqrt[2]]*Log[1 - (I*(Sqrt[e] + Sq 
rt[-(c^2*d) + e])*E^ArcCsch[c*x])/(c*Sqrt[d])] + (2*I)*Pi*Log[1 + (I*(S...
 
3.2.6.3 Rubi [A] (verified)

Time = 1.51 (sec) , antiderivative size = 571, normalized size of antiderivative = 1.11, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {6858, 6238, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \text {csch}^{-1}(c x)}{x \left (d+e x^2\right )^2} \, dx\)

\(\Big \downarrow \) 6858

\(\displaystyle -\int \frac {a+b \text {arcsinh}\left (\frac {1}{c x}\right )}{\left (\frac {d}{x^2}+e\right )^2 x^3}d\frac {1}{x}\)

\(\Big \downarrow \) 6238

\(\displaystyle -\int \left (\frac {a+b \text {arcsinh}\left (\frac {1}{c x}\right )}{d \left (\frac {d}{x^2}+e\right ) x}-\frac {e \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right )}{d \left (\frac {d}{x^2}+e\right )^2 x}\right )d\frac {1}{x}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {e-c^2 d}}\right )}{2 d^2}-\frac {\left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right ) \log \left (\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {e-c^2 d}}+1\right )}{2 d^2}-\frac {\left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e-c^2 d}+\sqrt {e}}\right )}{2 d^2}-\frac {\left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right ) \log \left (\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e-c^2 d}+\sqrt {e}}+1\right )}{2 d^2}-\frac {e \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right )}{2 d^2 \left (\frac {d}{x^2}+e\right )}+\frac {\left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right )^2}{2 b d^2}-\frac {b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {e-c^2 d}}\right )}{2 d^2}-\frac {b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {e-c^2 d}}\right )}{2 d^2}-\frac {b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {e-c^2 d}}\right )}{2 d^2}-\frac {b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {e-c^2 d}}\right )}{2 d^2}+\frac {b \sqrt {e} \arctan \left (\frac {\sqrt {c^2 d-e}}{c \sqrt {e} x \sqrt {\frac {1}{c^2 x^2}+1}}\right )}{2 d^2 \sqrt {c^2 d-e}}\)

input
Int[(a + b*ArcCsch[c*x])/(x*(d + e*x^2)^2),x]
 
output
-1/2*(e*(a + b*ArcSinh[1/(c*x)]))/(d^2*(e + d/x^2)) + (a + b*ArcSinh[1/(c* 
x)])^2/(2*b*d^2) + (b*Sqrt[e]*ArcTan[Sqrt[c^2*d - e]/(c*Sqrt[e]*Sqrt[1 + 1 
/(c^2*x^2)]*x)])/(2*d^2*Sqrt[c^2*d - e]) - ((a + b*ArcSinh[1/(c*x)])*Log[1 
 - (c*Sqrt[-d]*E^ArcSinh[1/(c*x)])/(Sqrt[e] - Sqrt[-(c^2*d) + e])])/(2*d^2 
) - ((a + b*ArcSinh[1/(c*x)])*Log[1 + (c*Sqrt[-d]*E^ArcSinh[1/(c*x)])/(Sqr 
t[e] - Sqrt[-(c^2*d) + e])])/(2*d^2) - ((a + b*ArcSinh[1/(c*x)])*Log[1 - ( 
c*Sqrt[-d]*E^ArcSinh[1/(c*x)])/(Sqrt[e] + Sqrt[-(c^2*d) + e])])/(2*d^2) - 
((a + b*ArcSinh[1/(c*x)])*Log[1 + (c*Sqrt[-d]*E^ArcSinh[1/(c*x)])/(Sqrt[e] 
 + Sqrt[-(c^2*d) + e])])/(2*d^2) - (b*PolyLog[2, -((c*Sqrt[-d]*E^ArcSinh[1 
/(c*x)])/(Sqrt[e] - Sqrt[-(c^2*d) + e]))])/(2*d^2) - (b*PolyLog[2, (c*Sqrt 
[-d]*E^ArcSinh[1/(c*x)])/(Sqrt[e] - Sqrt[-(c^2*d) + e])])/(2*d^2) - (b*Pol 
yLog[2, -((c*Sqrt[-d]*E^ArcSinh[1/(c*x)])/(Sqrt[e] + Sqrt[-(c^2*d) + e]))] 
)/(2*d^2) - (b*PolyLog[2, (c*Sqrt[-d]*E^ArcSinh[1/(c*x)])/(Sqrt[e] + Sqrt[ 
-(c^2*d) + e])])/(2*d^2)
 

3.2.6.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 6238
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e 
_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*ArcSinh[c*x])^n, 
 (f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[e, c^ 
2*d] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]
 

rule 6858
Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_ 
)^2)^(p_.), x_Symbol] :> -Subst[Int[(e + d*x^2)^p*((a + b*ArcSinh[x/c])^n/x 
^(m + 2*(p + 1))), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0 
] && IntegersQ[m, p]
 
3.2.6.4 Maple [F]

\[\int \frac {a +b \,\operatorname {arccsch}\left (c x \right )}{x \left (e \,x^{2}+d \right )^{2}}d x\]

input
int((a+b*arccsch(c*x))/x/(e*x^2+d)^2,x)
 
output
int((a+b*arccsch(c*x))/x/(e*x^2+d)^2,x)
 
3.2.6.5 Fricas [F]

\[ \int \frac {a+b \text {csch}^{-1}(c x)}{x \left (d+e x^2\right )^2} \, dx=\int { \frac {b \operatorname {arcsch}\left (c x\right ) + a}{{\left (e x^{2} + d\right )}^{2} x} \,d x } \]

input
integrate((a+b*arccsch(c*x))/x/(e*x^2+d)^2,x, algorithm="fricas")
 
output
integral((b*arccsch(c*x) + a)/(e^2*x^5 + 2*d*e*x^3 + d^2*x), x)
 
3.2.6.6 Sympy [F]

\[ \int \frac {a+b \text {csch}^{-1}(c x)}{x \left (d+e x^2\right )^2} \, dx=\int \frac {a + b \operatorname {acsch}{\left (c x \right )}}{x \left (d + e x^{2}\right )^{2}}\, dx \]

input
integrate((a+b*acsch(c*x))/x/(e*x**2+d)**2,x)
 
output
Integral((a + b*acsch(c*x))/(x*(d + e*x**2)**2), x)
 
3.2.6.7 Maxima [F]

\[ \int \frac {a+b \text {csch}^{-1}(c x)}{x \left (d+e x^2\right )^2} \, dx=\int { \frac {b \operatorname {arcsch}\left (c x\right ) + a}{{\left (e x^{2} + d\right )}^{2} x} \,d x } \]

input
integrate((a+b*arccsch(c*x))/x/(e*x^2+d)^2,x, algorithm="maxima")
 
output
1/2*a*(1/(d*e*x^2 + d^2) - log(e*x^2 + d)/d^2 + 2*log(x)/d^2) + b*integrat 
e(log(sqrt(1/(c^2*x^2) + 1) + 1/(c*x))/(e^2*x^5 + 2*d*e*x^3 + d^2*x), x)
 
3.2.6.8 Giac [F]

\[ \int \frac {a+b \text {csch}^{-1}(c x)}{x \left (d+e x^2\right )^2} \, dx=\int { \frac {b \operatorname {arcsch}\left (c x\right ) + a}{{\left (e x^{2} + d\right )}^{2} x} \,d x } \]

input
integrate((a+b*arccsch(c*x))/x/(e*x^2+d)^2,x, algorithm="giac")
 
output
integrate((b*arccsch(c*x) + a)/((e*x^2 + d)^2*x), x)
 
3.2.6.9 Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \text {csch}^{-1}(c x)}{x \left (d+e x^2\right )^2} \, dx=\int \frac {a+b\,\mathrm {asinh}\left (\frac {1}{c\,x}\right )}{x\,{\left (e\,x^2+d\right )}^2} \,d x \]

input
int((a + b*asinh(1/(c*x)))/(x*(d + e*x^2)^2),x)
 
output
int((a + b*asinh(1/(c*x)))/(x*(d + e*x^2)^2), x)